

1 / 42

Mesure de l'asymétrie avant-arrière A_{FB} avec le détecteur CMS

Exercices dirigés du cours Physique des particules - PHYSF416

Année académique 2017-2018

Overview

- Présentation
- 2 Introduction théorique
- 3 Le détecteur CMS
- 4 Les outils de base
- 5 Introduction au C++ et à ROOT
- 6 Exercice 1: calculer l'asymétrie A_{FB} théorique
- Texercice 2: simulations Monte Carlo

3 / 42

Section 1

Présentation

Présentation

Déroulement des exercices:

- 4 séances de 3h
 - Les mardis 07-14-21-28/11 de 13h à 16h
 - ► (Mardi 05/12 de 13h à 16h pour une séance Q&A)
- Répartition du travail:
 - Essentiellement en classe
 - A terminer chez vous

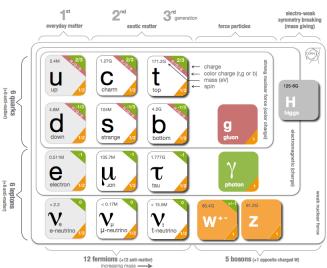
Présentation de vos résultats:

- Rapport écrit
 - Introduction du contexte théorique et expérimental
 - Sélection des événements, histogrammes pertinents
 - ► Résultats commentés

Encadrement

- David Vannerom: david.vannerom@ulb.ac.be
- Reza Goldouzian: reza.goldouzian@cern.ch
- Diego Beghin: Diego.Beghin@ulb.ac.be

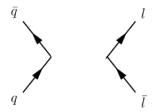
5 / 42


Section 2

Introduction théorique

Le Modèle Standard (SM)

6 / 42



 $\mathsf{DY} \equiv \mathsf{annihilation}$ d'une paire de quarks pour donner une paire de leptons chargés:

$$qar{q}
ightarrow Iar{I}$$

Quels sont les diagrammes possibles?

 $\mathsf{DY} \equiv \mathsf{annihilation}$ d'une paire de quarks pour donner une paire de leptons chargés:

Quels sont les diagrammes importants?

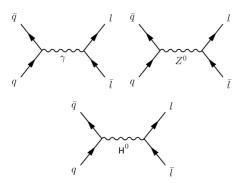
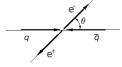
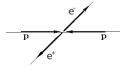


Diagramme de Feynman = Nombre complexe (élément de matrice \mathcal{M}):


La section efficace σ d'un processus faisant intervenir plusieurs diagrammes est définie par:

$$\begin{split} \sigma &= |\Sigma_{i=1}^{\textit{N}_{\textit{processus}}} \mathcal{M}_i|^2 \\ &= |\mathcal{M}_{\gamma} + \mathcal{M}_{\textit{Z}}|^2 \\ &= |\mathcal{M}_{\gamma}|^2 + |\mathcal{M}_{\textit{Z}}|^2 + \mathcal{M}_{\gamma} \mathcal{M}_{\textit{Z}}^* + \mathcal{M}_{\gamma}^* \mathcal{M}_{\textit{Z}} \\ &= \text{Photon-only} + \text{Z-only} + \text{Interference} \end{split}$$



10 / 42

Avant de discuter le résultat du calcul des sections efficaces, un peu de cinématique. Distinguons le processus élémentaire DY:

de la collision proton-proton:

- \sqrt{s} = énergie dans le centre de masse p p
- $\sqrt{s'}=$ énergie dans le centre de masse $q-\bar{q}$
- $oldsymbol{ heta}$ = angle entre la direction du quark initial et du lepton final

Voici l'expression des sections efficaces différentielles:

Photon-only:

$$\frac{d\sigma_{\gamma}}{d\Omega} = \frac{e^4}{(4\pi)^2} Q_q^2 Q_l^2 \frac{1}{8s'} \left[(1 + \cos \theta)^2 + (1 - \cos \theta)^2 \right]$$

Z-only:

$$\frac{d\sigma_Z}{d\Omega} = \frac{e^4}{(4\pi)^2} Q_q^2 Q_l^2 \frac{1}{8s'} |\mathcal{R}|^2 \left[c_{1,Z} (1 + \cos \theta)^2 + c_{2,Z} (1 - \cos \theta)^2 \right]$$

Interférence:

$$\frac{d\sigma_{int}}{d\Omega} = \frac{e^4}{(4\pi)^2} Q_q^2 Q_l^2 \frac{1}{8s'} \text{Re}(\mathcal{R}) \left[c_{1,int} (1 + \cos \theta)^2 + c_{2,int} (1 - \cos \theta)^2 \right]$$

Voici l'expression des sections efficaces différentielles:

Photon-only:

$$\frac{d\sigma_{\gamma}}{d\Omega} = \frac{e^4}{(4\pi)^2} Q_q^2 Q_l^2 \frac{1}{8s'} \left[(1 + \cos\theta)^2 + (1 - \cos\theta)^2 \right]$$

Z-only **ASYMETRIQUE EN** θ : $\sigma(\pi - \theta) \neq \sigma(\theta)$:

$$\frac{d\sigma_Z}{d\Omega} = \frac{e^4}{(4\pi)^2} Q_q^2 Q_l^2 \frac{1}{8s'} |\mathcal{R}|^2 \left[c_{1,Z} (1 + \cos \theta)^2 + c_{2,Z} (1 - \cos \theta)^2 \right]$$

Interférence **ASYMETRIQUE EN** θ : $\sigma(\pi - \theta) \neq \sigma(\theta)$:

$$\frac{d\sigma_{int}}{d\Omega} = \frac{e^4}{(4\pi)^2} Q_q^2 Q_l^2 \frac{1}{8s'} \text{Re}(\mathcal{R}) \left[c_{1,int} (1 + \cos \theta)^2 + c_{2,int} (1 - \cos \theta)^2 \right]$$

L'asymétrie avant-arrière (A_{FB})

On peut séparer la section efficace totale en deux parties:

- Avant (Forward): $\sigma_F = \sigma_{\theta < \pi/2}$
 - Evénements avec le lepton final dans la même direction que le quark initial
- Arrière (Backward): $\sigma_B = \sigma_{\theta > \pi/2}$
 - Evénements avec le lepton final dans la direction opposée à celle du quark initial

Et définir l'asymétrie avant-arrière:

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

L'asymétrie avant-arrière (A_{FB})

Si on exprime A_{FB} en fonction des variables du problème, on obtient:

$$A_{FB} = \frac{3}{8} \frac{c_2}{c_1}$$

où:

$$c_{1} = 1 + 2\operatorname{Re}(R)g_{Vl}g_{Vq} + |R|^{2} (g_{Vl}^{2} + g_{Al}^{2})(g_{Vq}^{2} + g_{Aq}^{2})$$

$$c_{2} = 4\operatorname{Re}(R)g_{Al}g_{Aq} + 8|R|^{2} g_{Vl}g_{Al}g_{Vq}g_{Aq}$$

$$g_{Vl,q} = I_{Wl,q}^{3} - 2Q_{l,q}\sin^{2}\theta_{W}$$

$$R = \frac{1}{Q_l Q_q \sin^2 2\theta_W} \frac{s'}{s' - M_Z^2 + is'} \frac{\Gamma_Z}{M_Z}$$

	Q	I^3_W
e	-1	-1/2
и	2/3	1/2
d	-1/3	-1/2

Est-ce que A_{FB} est une constante?

L'asymétrie avant-arrière (A_{FR})

Si on exprime A_{FB} en fonction des variables du problème, on obtient:

$$A_{FB} = \frac{3}{8} \frac{c_2}{c_1}$$

où:

$$c_{1} = 1 + 2\operatorname{Re}(R)g_{Vl}g_{Vq} + |R|^{2} (g_{Vl}^{2} + g_{Al}^{2})(g_{Vq}^{2} + g_{Aq}^{2})$$

$$g_{Al,q} = -I_{Wl,q}^{3}$$

$$c_{2} = 4\operatorname{Re}(R)g_{Al}g_{Aq} + 8|R|^{2} g_{Vl}g_{Al}g_{Vq}g_{Aq}$$

$$g_{Vl,q} = I_{Wl,q}^{3} - 2Q_{l,q}\sin^{2}\theta_{W}$$

$$R = \frac{1}{Q_l Q_q \sin^2 2\theta_W} \frac{s'}{s' - M_Z^2 + is'} \frac{\Gamma_Z}{M_Z}$$

	Q	I^3_W
e	-1	-1/2
и	2/3	1/2
d	-1/3	-1/2

 $\Rightarrow A_{FB}$ dépend de s', de l'énergie de la collision!

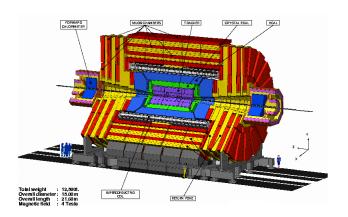
But des exercices

Le but de ces séances d'exercices sera de:

- Calculer la valeur théorique de A_{FB}
- Calculer A_{FB} en utilisant des simulations numériques
- Mesurer A_{FB} dans les données du détecteur CMS
- Comparer la théorie à la mesure et interpréter les résultats

17 / 42

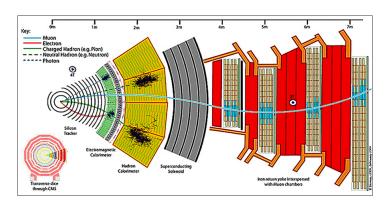
Section 3


Le détecteur CMS

Le détecteur CMS

18 / 42

CMS ≡ Compact Muon Solenoid



CMS: assemblage de couches (sous-détecteurs) remplissant chacun une tâche.

Le détecteur CMS

Voici une vue transverse de CMS:

Données et simulations

Simulations				
Information accessible				
Génération des événements (Monte Carlo) Collisions proton-proton	Simulation des interactions particules-CMS Interaction particules-CMS	Reconstruction	Analyse	
Information inaccessible	Information accessible			
Données				

Un peu de vocabulaire. Pour les simulations, on parle de:

- *Niveau généré*: niveau d'analyse avant l'interaction des particules avec le détecteur
- Niveau reconstruit: niveau d'analyse après la simulation de l'interaction des particules avec le détecteur et le processus de reconstruction

Parler de niveau généré pour les données n'a pas de sens puisqu'on a seulement accès aux informations après interaction des particules avec le détecteur!

21 / 42

Section 4

Les outils de base

Les bases: VirtualBox+emacs

22 / 42

Vous allez travailler sur une machine virtuelle. Pour y accéder, ouvrez *Virtual Box* et démarrez la session. Votre mot de passe est labo;123.

Pour ouvrir un fichier, emacs est conseillé:

emacs -nw file

Quelques astuces:

- Chercher un mot: ctrl+s puis tapez le mot dans le *minibuffer* en bas
- Sauver vos modifications: ctrl+x puis ctrl+s sans lâcher le ctrl
- Fermer le fichier: ctrl+x puis ctrl+c sans lâcher le ctrl

Les bases: commandes linux

- 1s: list, liste les fichiers présents dans le dossier courant
- cd dir: change directory, rentre dans le dossier dir
- mkdir dir: make directory, crée le dossier dir
- mv file dir: move, bouge le fichier file dans le dossier dir
- mv file1 file2: move, renomme le fichier file1 en file2
- cp file dir: copy, copie le fichier file dans le dossier dir
- Un point . indique le dossier courant
- Deux points .. indiquent le dossier parent

24 / 42

Section 5

Introduction au C++ et à ROOT

Les objets C++

25 / 42

En C++, on peut définir des objets auxquels sont associées plusieurs méthodes. On utilise pour cela des classes:

myObject.h

myObject.C

La classe *myObject* est définie par:

- myObject.h: déclare les méthodes
- myObject.C: définit les méthodes pré-déclarées

Utiliser une classe avec ROOT

26 / 42

Pour utiliser la classe *myObject* avec ROOT, suivez les commandes suivantes:

```
root -l
root [0] .L myObject.C++

root [1] myObject jack
root [2] jack.PrintSomething()
Hello!
root [3] jack.GiveMeThisNumber(3.876)
3.876
```

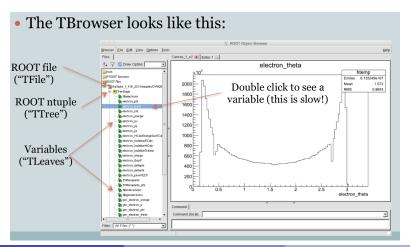
- root [0]: compilation de la classe
- root [1]: création d'un nouvel objet jack de la classe myObject
- root [2]: appel de la méthode PrintSomething de la classe
- root [3]: appel de la méthode GiveMeThisNumber de la classe

Les ROOT trees

ROOT organise l'information sous forme d'arbres (on parle de trees ou de ntuples):

- 1 collision = 1 entrée
- 1 variable = 1 branche (e.g. énergie de l'électron, angle ϕ du muon, etc.)

Exemple d'un tree contenant l'information de 3 évènements et 3 branches (X-pos, Y-pos et Energy):


Entry number	X-pos	Y-pos	Energy
1	13	0	17
2	24	-3	15
3	35	9	8

Visualiser un ROOT tree

Ouvrez le fichier .root:

root -l myfile.root
TBrowser myBrowser

29 / 42

Section 6

Exercice 1: calculer l'asymétrie A_{FB} théorique

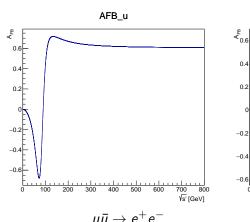
Exercice 1: calculer l'asymétrie A_{FB} théorique **iihe**

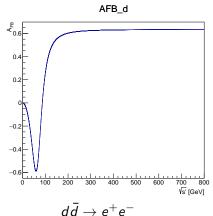
Ouvrez la macro: Compute_AFB.C

Modifiez-là et complétez-là pour obtenir les histogrammes d'asymétrie avant-arrière dans les deux cas suivants:

- $u\bar{u} \rightarrow e^+e^-$
- ullet $dar d o e^+e^-$

Plus d'info au début de la macro dans les commentaires. Pour lancer la macro:


root Compute_AFB.C+


Exercice 1: résultat

31 / 42

Vous devez obtenir ces deux histogrammes:

32 / 42

Section 7

Exercice 2: simulations Monte Carlo

Macro Analysis

33 / 42

Analyse de simulations MC à l'aide de la macro Analysis.C.

Analysis.C fait appel à un *header*, Analysis.h où est déterminé quel fichier ROOT est utilisé. A partir de la ligne 106:

```
TChain * chain = new TChain("tree","");
chain->Add("MC_DY.root");
tree = chain;
```

Analysis.h liste aussi les variables inclues dans l'arbre, e.g.:

```
vector<float> *electron_pt;
vector<float> *electron_energy;
```

Vous trouverez ce fichier, ainsi que la version à jour de Analysis.C et Analysis.h sur ma homepage:

http://t2bweb.iihe.ac.be/~vannerom/PHYSF416/

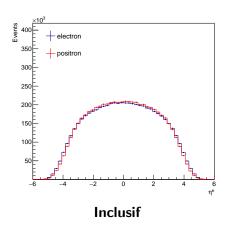
Tips and tricks

- Taille d'un vecteur en C++: electron_pt->size()
- Valeur de l'entrée i d'un vecteur: electron_pt->at(i)
- Remplir un histogramme: Histo->Fill(variable, weight)
- Somme d'histogrammes H = H + H1 : H > Add(H1)
- Différence d'histogrammes H = H H1 : H > Add(H1, -1)
- Division d'histogrammes H = H/H1 : H- > Divide(H1)

Etude des variables cinématiques

Modifiez la macro pour obtenir les histogrammes suivants au niveau généré:

- ullet Impulsion transverse $p_{\mathcal{T}}$ des électrons $\left(e^-+e^+
 ight)$
- ullet Pseudorapidité η des électrons
 - ▶ Superposez η^{e^-} et η^{e^+} pour:
 - ★ $M(e^+e^-) \in [0, Inf]$ (inclusif)
 - ★ $M(e^+e^-) \in [100, Inf]$
 - Discutez l'intérêt de ces distributions
- ullet Angle azimuthal ϕ des électrons


Commentez ces histogrammes (valeurs limites, forme (shape)).

Pour lancer la macro

- root
- .L Analysis.C
- Analysis test
- test.Loop()

Pseudorapidité η^{e^+}, η^{e^-}

 $M(e^+e^-) > 100 GeV$

Le système e^+e^-

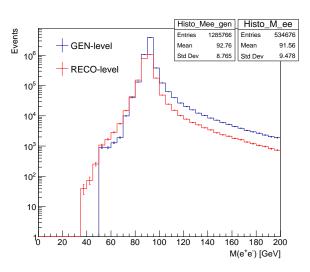
Construisez ensuite le quadrivecteur de la paire e^+e^- . Obtenez les histogrammes suivants au niveau généré:

- Masse invariante $M(e^+e^-)$ de la paire e^+e^-
- Impulsion longitudinale $p_Z(e^+e^-)$ de la paire e^+e^-

Construisez également $M(e^+e^-)$ au niveau reconstruit et superposez-le à l'histogramme au niveau généré.

Pour lancer la macro

- root
- .L Analysis.C
- Analysis test
- test.Loop()


La masse invariante e^+e^- : résultat

Vous devez obtenir ces histogrammes:

Expliquez les différences:

- Nombre d'événements
- Largeur du pic
- Bornes


L'impulsion longitudinale e^+e^- : résultat

Vous devez obtenir ces histogrammes:

Expliquez les différences:

- Nombre d'événements
- Largeur du pic
- Bornes

L'asymétrie avant-arrière

Nous allons calculer A_{FB} de quatre façons différentes dans les simulations:

	GEN-GEN	GEN-RECO	RECO-GEN	RECO-RECO
Boost du quark	quark	quark	Z	Z
Electrons	GEN	RECO	GEN	RECO

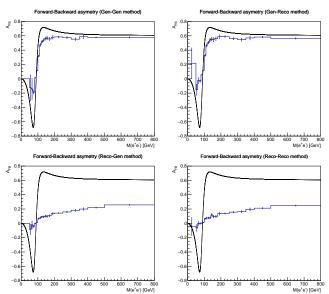
La première partie du nom se réfère à l'information sur le boost longitudinal (p^z) du quark:

- quark: on utilise la vraie direction du quark
- Z: on suppose que le quark et le boson Z (le système e^+e^-) sont boostés dans la même direction

La seconde partie du nom se réfère au niveau de reconstruction de l'électron:

- GEN: on utilise les électrons au niveau généré
- RECO: on utilise les électrons au niveau reconstruit.

L'asymétrie avant-arrière


Voici la procédure GEN-GEN. Pour chaque événement:

- Déterminez la direction longitudinale du quark $(sign(p^z))$
- ullet Déterminez l'angle heta de l'électron dans le système du CM
 - ► Construisez le système *e*⁺*e*[−]
 - ★ TLorentzVector v_ele, v_pos;
 - * v_ele.SetPtEtaPhiE(ele_pt,ele_eta,ele_phi,ele_E);
 - v_ele+v_pos;
 - Boostez les particules dans le référentiel du centre-de-masse
 - ★ v_ele.Boost(-(v_ele+v_pos).BoostVector());
 - ightharpoonup Récupérez l'angle heta de l'électron dans le CM
 - ★ v_ele.Theta();
- Déduisez-en l'angle que fait l'électron avec le quark dans le référentiel du centre-de-masse
- ullet En fonction de cet angle, remplissez un histogramme "forward" ${\cal H}_{F}$ ou "backward" ${\cal H}_{B}$
- Construisez l'histogramme d'asymétrie: $H_{A_{FB}} = \frac{H_F H_B}{H_F + H_B}$
- ⇒ Réiterez pour les autres cas!

L'asymétrie avant-arrière: résultats

Voici les quatre histogrammes que vous devez obtenir:

